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  The Solar Dynamic Observatory (SDO) aims to study the Sun's influence on the Earth, 
the source, storage, and release of the solar energy, and the interior structure of the Sun.  
During science observations, the jitter stability at the instrument focal plane must be 
maintained to less than a fraction of an arcsecond for two of the SDO instruments.  To meet 
these stringent requirements, a significant amount of analysis and test effort has been 
devoted to predicting the jitter induced from various disturbance sources. This paper 
presents an overview of the SDO jitter analysis approach and test effort performed to date.  
It emphasizes the disturbance modeling, verification, calibration, and validation of the high 
gain antenna stepping mechanism and the reaction wheels, which are the two largest jitter 
contributors.  This paper also describes on-orbit mitigation strategies to protect the system 
from analysis model uncertainties.  Lessons learned from the SDO jitter analyses and test 
programs are included in the paper to share the knowledge gained with the community.        

I.  Introduction  
The Solar Dynamic Observatory (SDO) is scheduled for launch in January 2009.  The main science objective of 

this mission is to observe the Sun and increase the understanding of the Sun’s influence on the Earth.  There are 
three instruments onboard the SDO for achieving its scientific goals: the Atmospheric Imaging Assembly (AIA), the 
Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE).  Both AIA 
and HMI are sensitive to high frequency pointing perturbations and have sub-arcsecond level line-of-sight (LOS) 
jitter requirements.  Extensive modeling and analysis efforts have been directed in estimating the amount of jitter 
disturbing the science instruments.  In order to verify the disturbance models and to validate the jitter performance 
prior to launch, many jitter-critical components and subassemblies were tested either by the mechanism vendors or 
at the NASA Goddard Space Flight Center (GSFC).   

A schematic of the SDO jitter test plan and the disturbance-to-performance flow is shown in Figure 1.  The test 
plan consisted of hardware component tests, structural component tests, and assembly level tests.  The hardware 
component test results were used for calibrating the disturbance input models which drove the observatory structural 
and optical models used to predict the LOS jitter performance.  The structural component tests provided data for 
updating the structural finite element model (FEM).  The test plan also included two assembly level tests, high gain 
antenna (HGA) and structural verification unit (SVU), for validating the jitter analysis process and the structural 
FEM.  The HGA assembly tests included two HGA proto-flight gimbal mechanisms, the flight HGA dish, and other 
flight-like supporting structures.  The SVU is a duplicate of the flight structure and was used in conjunction with a 
flight reaction wheel to test the disturbance levels generated by the wheel.  Additional spacecraft damping 
information was extracted from SVU stinger tests which demonstrated that the damping ratio used in the jitter 
analysis was reasonable.   

This paper provides an overview of the SDO jitter test program and jitter analysis approach.  The paper 
emphasizes the checks conducted for each of the analysis models and how test data were used to enhance the fidelity 
of the models.  Brief descriptions of the test setup and relevant results are also included in the paper.  Since the flight 
vehicle will not have “end-to-end” disturbance to LOS tests on the ground, there will still be several sources of 
uncertainties in the analysis.  To protect against those uncertainties, on-orbit mitigation plans were created with jitter 
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test algorithms implemented in simulation. After discussing the on-orbit plans, the paper concludes with some 
lessons learned from the SDO jitter analysis and test program.   

 

 
Figure 1 SDO Jitter Test Plan and Disturbance-to-Performance Flow 

 

II. Analysis Overview 
The SDO jitter performance is defined as the line-of-sight (LOS) motion measured at the instrument detectors.  

The spacecraft attitude control system (ACS) is capable of removing large, slowly varying LOS (or pointing) errors.  
Both AIA and HMI have additional instrument stabilization systems (ISS) to reduce mid-frequency range LOS 
disturbances.  The residual LOS motion, after ACS and ISS compensation, measured on the instrument detectors 
must be less than 0.17 arcsecond 1-σ for AIA and 0.14 arcsecond 1-σ for HMI.   

A.   Jitter Analysis Approaches   
There are two jitter evaluation metrics used in estimating SDO jitter performance.  The first metric is a 

frequency-domain based evaluation method defined by the SDO scientists:  
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where jσ is the root-mean-square (RMS) or 1-σ jitter, zzS is the power spectral density (PSD) of the LOS motion, 

ATFG  is the attenuation transfer function (ATF) that models the ISS performance, ω is frequency in Hz, and sinc is 
a function defined as sinc(x) = sin(x)/x.   The variable τ is the instrument exposure or integration time.  The AIA 
telescopes have large exposure time variations that range from 0.1 sec to 3.0 sec, whereas the HMI exposure time 
has a smaller time range of 0.15-0.3 sec.  The frequency-domain based jitter metric is appropriate for analyzing 
random disturbance inputs.  However, many of the jitter sources are not random and their jitter effects can be 
analyzed using time-domain simulations.  A second jitter performance metric used for non-random types of jitter 
effects is defined as follows1: 
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where ( )tθ is the LOS motion, N is the number of sampled data points in a sliding window with width τ , 1M is the 
initial index of the sliding window, 2M is the end index of the window, and dt is the simulation sample time. The 
jitter prediction is calculated using either Eq. (1) for frequency-domain analysis or Eq. (2) for time-domain 
simulations.  The jitter predictions and various sensitivity analyses were performed using Matlab, Simulink, and 
Nightsky Systems Inc.’s Disturbance-Optics-Controls-Structures (DOCS) Toolbox. 

B.   Integrated Modeling and Model Check Approaches 
The SDO jitter analysis employs an integrated modeling approach where disturbance, structures, controls, and 

performance metrics are combined into one dynamic model to predict the end-to-end LOS performance of the 
system.  Figure 2 is a functional diagram of all the sub-system models used in the integrated model.  The disturbance 
models are inputs to the system, the structural model is created from the finite element analysis, the ACS model 
stabilizes the rigid body modes of the structural model, the optical model maps all the optical motions to the LOS 
motion, and the instrument stabilization system (ISS) models the LOS motion attenuation from the instrument 
controllers.  The outputs from the integrated model are the LOS motion measured at the AIA and HMI charged 
coupled devices (CCDs).   

 
Figure 2 SDO integrated model 

 
The yellow boxes in Figure 2 represent common elements to all disturbance analyses.  These common analysis 

models will be described in more detail in Section III.  There are several disturbance sources onboard the 
observatory.  The two largest jitter contributors are the HGA stepper motors and the reaction wheels.  Other sources 
include the instrument mechanisms, and the ACS actuators (e.g. wheel torque quantization) and sensor noises that 
also introduce jitter through the ACS closed-loop system. This paper focuses on the tests performed to verify, 
calibrate, and validate the HGA model in Section IV and wheel disturbance model in Section V.  

Before discussing the SDO jitter team’s model check approaches, the following definitions will help the 
discussions in the rest of the paper:  

• Verification: The process of determining that a computational model accurately represents the 
underlying mathematical model and its solution2.  

• Validation: The process of determining the degree to which a model is an accurate representation of the 
real world from the perspective of the intended uses of the model3.  

• Calibration: The process of adjusting numerical or physical modeling parameters in the computational 
model for the purpose of improving agreement with experimental data3. 
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III. Common Analysis Models 
All the jitter analyses are performed using the same structural, damping, optical, and controller models.  This 

section provides brief descriptions of each of the common analysis models and how the models are verified, 
calibrated, and validated.  In addition, the jitter team’s approach in handling model uncertainties is also discussed in 
this section.   

A. Structural Model 
The SDO FEM was developed to provide observatory modal information for use with advanced jitter analytical 

tools.  The FEM represents the SDO in an on-orbit configuration: fully deployed, instrument covers open, and with 
25% of the fuel and oxidizer mass remaining.  The FEM includes the spacecraft primary structure (Propulsion 
Module, Spacecraft Bus, and Instrument Module), spacecraft secondary structure (High Gain Antenna System 
(HGAS), Solar Array System (SAS) and hardware mounting brackets), and detailed instrument models (AIA, HMI, 
and EVE).  The jitter model was developed and maintained using FEMAP, and analyses were performed using 
MSC/NASTRAN.  Instrument models were provided by Lockheed Martin and Laboratory for Atmospheric and 
Space Physics, and the HGA model was provided by Loral. All other spacecraft modeling was done at GSFC. 

The Finite Element Model used in the SDO 
jitter analysis included more detail than typical of 
observatory models used in loads analysis.  The 
detail was necessary to more accurately predict 
low mass modes and higher frequency modes that 
have a significant effect on jitter but negligible 
effect on loads. An effort was made to accurately 
represent the mass and stiffness of the entire 
spacecraft and instrument structure to improve 
predictions for modes out to and beyond 100 Hz.  
Figure 3 shows the SDO jitter model.   

The final observatory jitter FEM included 
461,044 nodes and 483,392 elements. The detailed 
instrument models accounted for over 70 percent 
of the model element count.  Spacecraft structural 
interfaces were modeled to constrain correct 
degrees of freedom (DOFs) at fastener and pin 
locations and to represent realistic structure 
interaction (i.e. heel-toe effects). Beam-like 
structures were primarily modeled using plate 
elements in lieu of line elements to better reflect 
local flexibility.  Secondary structure was also 
modeled with additional fidelity to improve the 
representation of stiffness of the intermediate 
structure between jitter sources and instruments.   

To aid in the representation of the HGA actuator 
mechanism torsional stiffness and stepping motion, the 
actuator FEM includes the holding torque and gearbox 
stiffness along with the armature and hub inertial terms.  
Gear ratios were modeled using a multi-point constraint.  
More detailed information on HGA mechanism modeling 
will be described in Section IV.  Fuel and oxidizer slosh 
were modeled to represent the first two slosh modes.  See 
Figure 4 for more details.  The first two modes contain 
most of the moving mass, so the higher frequency modes, 
which carry very little mass, are ignored.  The slosh 
model includes spring mass systems for the slosh and 
assumes radial and axial slosh performances are similar. 
The residual masses, not participating in the slosh modes, 
are connected rigidly to the tanks. 

Figure 3 SDO jitter FEM 

Figure 4 Slosh model included in FEM 
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Model verification was performed though model verification checks.  The FEM was subject to a Unit Enforced 
Displacement and Rotation check, to verify that no illegal grounding was present in the model, and Free-Free 
Dynamics with a Stiffness Equilibrium check to verify that the model acts as a rigid body when it is unconstrained. 
The Stiffness Equilibrium check also checks the stiffness matrix to verify that there were no grounding effects. 

Model calibration and validation involved correlating the model to modal and frequency response test data.  The 
model was reduced to represent the test configurations and changes to the reduced model were incorporated into 
observatory jitter FEM.  Primary structure FEM was calibrated through a modal survey that targeted the primary 
high mass modes of the observatory out to 60 Hz. Secondary structure and instrument models were calibrated 
through matching frequency response from tap and vibration testing. Differences in test and analytical predictions 
were found primarily to be a result of insufficient fidelity in specific areas of the model.  Off-line high fidelity 
models were created for the complex HGAS bracketry to improve model correlation. Stiffness values from the off-
line models were incorporated into the observatory model. 

The normal modes solution of MSC/NASTRAN was run on the unconstrained FEM, and mode shape and 
frequency data for a subset of 120 nodes was provided to the jitter group. The model was run in five different HGAS 
gimbal orientations to assess their effects on jitter. The Residual Vector augmentation method was used to generate 
auxiliary modes containing the additional contributions needed to match the static shape of gimbal rotations. This 
was done by applying equal and opposite moment loads to each actuator separately using NASTRAN LSEQ cards in 
the normal modes analysis run. The analysis runs produced over 650 modes between 0 and 200 Hz.  

B. Damping Model  
The damping model assumed uncoupled modal damping. The scalar damping value, used for all modes, was 

calibrated by test. The test article comprised the Structural Verification Unit bus, the flight Instrument Module, 3 
AIA mass simulators and one AIA dynamic simulator, and an HMI mass simulator (Figure 5).  The bus was 
mounted on air bags to give flight-like boundary conditions. The test article was excited using a proof mass actuator 
through a force-gage-equipped stinger.  Tests at several forcing levels (at least two, three if noise level permitted) 
provided amplitude dependence information.  Frequency Response Functions (FRFs) from input force to 19 
accelerometer responses were acquired with a DataMax data acquisition system. The FRFs were fit with system 
identification tools to produce a total of 88 Single Input, Multiple Output (SIMO) state space models representing 
different amplitudes, input locations, and accelerometer outputs. A total of 1234 modes in the 20-200 Hz range were 
extracted. The average response levels of 7 to 46 milli-g’s, depending on forcing amplitude, were linearly 
extrapolated to the flight level of about 0.5 milli-g’s.  The resulting damping set was binned into 0.1% damping 
histograms (Figure 6). The resulting damping histogram shows a peak at 0.4% damping, with about 5% of the 
modes below 0.3% damping. The baseline damping value was set at 0.3%. 

 
 
 

 
 
 

Figure 5 SVU jitter test configuration 
Figure 6 SDO jitter test damping histogram 
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C. Optical model  
The optical ray trace models for AIA and HMI were provided by analysts at the Lockheed Martin Solar and 

Astrophysics Lab (LMSAL).  Using the optical models, the analyst perturbed each DOF of all the optical elements 
and recorded the resulting image shift on the CCD.  At the end of this process, a linear matrix was created that maps 
the small optical motions to image motions measured on the CCD (e.g. LOS errors).  This matrix is often referred to 
as the optical sensitivity matrix.   

The optical ray trace model passed the unit rotation check verification test.  The entire instrument was rotated 
rigidly about some angle, and the predicted motion on the CCD was equal to the specified angle rotation.  A SDO 
jitter analyst also reconstructed the LMSAL ray trace model based on the optical descriptions and produced the same 
optical sensitivity matrix as the analyst at LMSAL.   

   The optical models were calibrated by LMSAL by measuring the focal length of the primary mirror, the 
secondary mirror, and the effective focal length of the telescope system.  To validate the optical performance of the 
telescope, interferometry tests were performed at the Smithsonian Astrophysical Laboratory. 

D. Control models 
SDO features two control systems that influence the pointing of the spacecraft: (1) attitude control system (ACS) 

and (2) instrument stabilization system (ISS).  The ACS uses reaction wheels to stabilize rigid body pointing of the 
observatory. The ACS control system design, the wheel torque models, and the sensor models are provided by the 
ACS analysis team4.  The attitude controller consists of a standard proportional-integral-derivative (PID) controller 
and a second-order structural filter for suppressing low frequency flexible modes and gain stabilizing the system.  
For jitter analysis, the main purpose of the ACS is to stabilize the three rigid-body modes.  The ACS has no impact 
on the high frequency behavior or jitter motion of the closed-loop system.  The ACS performance is verified by a 
high fidelity simulation developed by the SDO ACS team.  Several ACS sensors and actuators have been tested to 
calibrate various models in the ACS simulation.  System level performance tests with ACS hardware in the loop will 
also be conducted to validate the controller performance.   

Both AIA and HMI have an ISS that further attenuates residual pointing errors around body Y and Z axes (or 
tip/tilt of the LOS vector) from the ACS. The ISS has much higher bandwidth than the ACS and does impact the 
jitter performance of the system.  These controllers are designed and constructed by engineers at the LMSAL.  Each 
AIA science telescope is accompanied by a guide telescope (GT) that uses limb sensors to provide pointing jitter 
signals to the ISS for image motion correction.  The AIA ISS employs a PZT actuated tip/tilt secondary mirror 
located inside the science telescope to center the image on the CCD. Since the actuated mirror is not in the detection 
(optical) path of the limb sensor, the AIA has an open-loop ISS design. The performance of the AIA ISS will depend 
on the calibration of the GT error signal and the image motion introduced by the PZT actuator. HMI also has limb 
sensors to feed back error signals to its ISS which drives a tip/tilt mirror to reduce image motion. Unlike the AIA 
design, the actuated mirror for HMI is in the optical path of the limb sensor. Therefore, the HMI ISS system operates 
in a closed-loop mode. 

The disturbance rejection capabilities of each ISS were modeled as high-pass filters.  These models were verified 
by demonstrating that the magnitudes of the high-pass filters match the requirements on the ISS exactly.  The actual 
performance of each of the ISS was tested by engineers at LMSAL.  The test data were delivered to GSFC for 
calibrating and validating the ISS models.  The left and right plots of Figure 7 illustrate the comparison between the 
ISS test data and the ISS model for AIA and HMI, respectively.  As a note, when the test data showed better 
suppression than is required, the ISS model matches the required performance in order to add some conservatism to 
the analysis.     

E. Uncertainty 
There are three types of uncertainties considered in the SDO jitter analysis.  The first type is the modal gain 

uncertainty since the magnitudes of most of the high frequency modes are not validated by test data.  To protect 
against the modal gain uncertainty, the jitter analysis team requires a 100% margin on the current best estimate 
(CBE) jitter when compared to the allocated requirements.  The percent margin is defined as  

 Requirement% margin = 1 *100
CBE

⎛ ⎞−⎜ ⎟
⎝ ⎠

 (3) 

The second type of uncertainty is modal frequency.  Only the frequencies of primary modes are matched to the test 
data, and the frequencies of other modes may easily vary 5-10% and possibly more.  In order to estimate the impact 
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of modal frequency uncertainty on the analysis results, the jitter team performed frequency sensitivity analyses by 
either varying the FEM modes or the input disturbance frequencies by +/- 10% .  The worst-case result from the 
frequency sweep studies was reported as CBE to guard against frequency uncertainty.  The third type of uncertainty 
is on disturbance amplitude.  With the exception of the HGA and wheels, most of the disturbance mechanisms only 
have partial test data available (i.e. not all three forces and three torques are measured).  In those cases, the analysis 
team applied an additional factor (1.5-2.0) to the CBEs.      

 

 
Figure 7 Instrument attenuation transfer function: (left) AIA ISS (right) HMI ISS 

IV. HGA Disturbance Model 
The High Gain Antenna System (HGAS) uses stepper motor actuators to drive each of the two antennae in two 

axes (Azimuth and Elevation). Each actuator consists of a 3-phase, 40-pole stepper motor (240 detents) actuating 
through a 200:1 harmonic drive, for a final output step size of 0.0075 degrees.  Each actuator step imparts a small 
disturbance torque into the spacecraft. The sequence of steps as the actuators move to follow the commanded profile 
can interact in complex ways with the ring down from previous steps and from other actuators. Worst-case estimates 
of HGA-induced jitter showed that the allocations were violated by several hundred percent. A comprehensive 
analysis was therefore undertaken to determine the percentage of time that the allocations were exceeded, so that the 
science degradation could be incorporated into the data continuity budget. The analysis was conducted by 
embedding the spacecraft dynamic model inside a nonlinear simulation of the actuator electrodynamics, and driving 
the gimbals at representative speed profiles. The speed profile results were then combined to predict the net 24-hour 
jitter response for each of three phases of operation: +Z tracking, where the +Z antenna tracks the ground station and 
the –Z antenna is motionless; -Z tracking; and handoff, where the two antennae swap each half of the 24-hour orbit. 
The three operational phases are then combined to predict the distribution of  HGAS-induced jitter over an entire 
year.  This section will describe the models that are used to analyze HGAS jitter, the verification steps for the 
models, calibration activities, and validation of the model by test.  

A. Model and Analysis Approach 
The unpowered actuator dynamic 

stiffness is represented in the dynamic 
model using lumped masses and stiffnesses, 
and a Multi-Point Constraint (MPC) 
equation to represent the gearbox (Figure 
8).  The model includes the masses and 
inertias of the case, armature, and output 
shaft. The non-drive-axis stiffnesses (radial 
shear, bending, and axial stiffness) are 
represented with scalar springs. The 
unpowered holding torque (detent torque) 
of the actuator is represented with an 
equivalent torsional spring. The compliance Figure 8 HGA actuator model in FEM 
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of the harmonic drive is reflected to the output of the gearbox and is represented as a torsional spring.  The model is 
replicated four times, one for each of the actuators.  

The actuator electrodynamic model is implemented as a Simulink(R) simulation.  The electrodynamic torques 
include the powered and unpowered holding torques, and back-EMF torque. The simulation also includes Coulomb 
and viscous friction between the armature and case, and across the harmonic drive.  The simulation torques are 
applied to the relevant nodes of the FEM. The nodal angles and rates are then fed back to the actuator model to 
compute the various angle- and rate-dependent torques. The simulation also includes a representation of the ACS 
and GCE processes that drive the antennas.  This implementation enables accurate modeling of the various jitter 
mitigation approaches, namely stagger stepping and randomized stepping, for an arbitrary actuator profile8. 

The actuator parameters include motor constant, motor inductance, detent torque, coulomb and viscous friction 
of various actuator components, etc. Where possible, parameters are directly measured and a parameter range is 
identified. Other parameters must be calibrated by tuning the model response to match measurement data. 
Calibration test results will be presented. An important point of note is that the initial parameters received from the 
actuator vendor were set by torque margin requirements, where higher friction is conservative.  For jitter response, 
higher friction gives lower response. Therefore the lowest expected friction must be used for conservative jitter 
analysis. The baseline mechanical friction parameters used for jitter analysis were all extracted from calibration data. 

Modal frequency uncertainty is handled somewhat differently for the HGAS Jitter analysis, as compared to other 
disturbance sources. The analysis assumes a constantly varying step rate, which will repeatedly cross critical 
structural frequencies. Therefore an error in prediction of modal frequencies will change the section of the actuator 
profile that results in peak jitter, but not in the peak jitter amplitude. Therefore the analysis is inherently insensitive 
to errors in modal frequency, and no additional steps are taken to account for it. Modal gain uncertainty is handled in 
the HGAS Jitter analysis identically to other sources, by holding out a margin requirement. 

B. Model Verification 
The actuator model is verified by computing the bus and antenna rotation angles, after a single step is applied to 

one actuator. The true angles reached after such a move can be computed from the inertias of the bus and the 
antenna, and the offsets of each component’s CG with respect to the hinge. The steady state angles from the 
simulation match the closed-form angles, confirming that the FEM modeshapes capture the inertia ratios and that the 
simulation conserves angular momentum.  The simulation is also cross-checked against a Swales analysis code 
(TRONS) with good agreement. 

C. Model Calibration 
The model is calibrated in three separate tests: winding voltage tests, which provide data on parameters that 

dominate the motion of the armature; actuator jitter tests, with the actuator driving a rigid load; and HGAS tap tests, 
to update the Finite Element model of the HGAS structure that filters the actuator torques before they reach the bus. 

The winding voltage tests were conducted by stepping the actuator at various rates, and measuring the voltage 
across the redundant winding bleed resistor.  Typical results are shown in Figure 9.  The left plot shows the 
measured voltages for the three winding phases. The right plot shows the predicted voltages. The waveforms are 
captured very closely. There is a magnitude discrepancy of about 30%, possibly indicating some problem in the 
electrodynamic coupling model. However, the frequency and envelope are sufficient to validate the mechanical 
parameters for motor armature inertia and friction, and the powered and unpowered holding torques. 

The second set of calibration tests to match harmonic drive parameters were conducted by mounting the actuator 
on a Kistler load table (Figure 10). Three different rigid load disks were fabricated, representing the range of inertias 
seen by the HGAS actuators, with inertias of 0.5 kg-m2, 1.0 kg-m2, and 2.0 kg-m2. The actuator was stepped at 
various rates and the reaction forces on the table were captured.  The results were used to tune the harmonic drive 
stiffness and mechanical friction. The harmonic drive stiffness is nonlinear (it is a stiffening spring, with higher 
torque at larger angles), so the linear stiffness in the model was tuned for the particular amplitude of operation. The 
tests also showed that the mechanical friction is dominated by viscous (rate-dependent) friction, which increased at 
higher inertias (presumably because of axial loading of the shaft). The damping value from the lowest inertia was 
used as the baseline value, to give the most conservative jitter prediction.  Figure 11 plots the measured and 
predicted reaction torques, after tuning, for a single step. The tuned model captures the frequency and ringdown 
decay very closely. The peak torque amplitude of the model is 4.3 N-m, very close to the measured 5.2 N-m peak.    

The final set of calibration activities were performed on the HGAS structure itself, including everything 
outboard of the azimuth bracket. The HGAS was mounted to a Kistler table at the base of the azimuth bracket.  
Accelerometers were placed at the elevation actuator and at the back side of the boom, behind the dish. An 
instrumented hammer was used to tap the structure. FRFs between hammer inputs and Kistler and accelerometer 
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outputs were measured. System identification models of the FRFs were created and the modal frequencies below 
200 Hz were used to tune the FEM. Initially the FEM showed the first few modes to be too soft, and the higher 
modes (above 80 Hz) to be too stiff. This is consistent with a mesh that is not fine enough. A detailed model of the 
azimuth bracket was developed and used to create a general stiffness element (GENEL) representation. Using this 
representation, the modal frequency error improved to 2% in the lower modes and 5% over all modes. 

 
 

 
Figure 9 Winding voltage test results 

 
 
 
 

 

D. Model Validation 
The HGA Jitter model was validated by mounting the HGAS system to the Kistler table, and stepping through 

various move profiles. The Kistler table responses were acquired, processed to Power Spectra, and plotted against 
the predicted force/torque spectra. The tests were repeated at four different joint configurations, and at several step 
rates from 1 PPS to 66 PPS.  Typical results for a 0.5 Hz step rate are shown in Figure 12.  The plots show the six 
measured forces/torques, and the six predicted forces/torques. Note that a constant modal damping of 0.7%, equal to 
the average modal damping extracted from the tap test results, was used in the prediction. The predicted forcing is 
within a factor of two at all significant modes in the 10-100 Hz range.  

 
 

 

Figure 10 Kistler table with HGA actuator
and load disk 

Figure 11 Reaction force from single HGA 
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Figure 12 HGA validation results: (left) measured PSD (right) predicted PSD 

 

V. Reaction Wheel Disturbance Model  
SDO has four Goodrich E-type reaction wheels onboard the spacecraft for attitude control.  These wheels are 

mounted on the four upper bus panels of the spacecraft with the spin axis pointing 60 deg away from the body X 
axis.  The maximum torque capability of each wheel is 0.25 Nm with a momentum limit of 70 Nms.  The reaction 
wheels are well known sources of jitter disturbances5 due to static imbalance, dynamic imbalance, and bearing 
imperfections that introduce tonal disturbances occurring at known ratios of the wheel speed.  For SDO, the change 
in wheel speed is expected to be slow during science mode.  As a result, the wheel tonal disturbances will have 
sufficient time to excite observatory structural modes and cause large vibrations.  The techniques for analyzing tonal 
reaction wheel disturbances can be found in references 6 and 7. This section focuses on the wheel disturbance 
modeling approach, and verification, calibration, and validation of the wheel disturbance analysis.  

A. Modeling and Analysis Approach 
The reaction wheel disturbance forces were measured by Goodrich in order to verify the imbalance 

requirements. The disturbance data were taken at a relatively coarse set of wheel speeds, in 60 revolutions per 
minute (RPM) steps. The tonal disturbances from the discrete data sets were unlikely to occur exactly at the 
frequency of a structural mode, and therefore the peak jitter would be missed.  As an alternative, a semi-analytical 
wheel disturbance model was tuned to the test data. The model could then be stepped at a very fine wheel speed 
increment to ensure that the peak response was captured. The semi-analytical wheel model consisted of a physical 
model of the wheel axial and rocking modes, including gyroscopic torques on the wheel, excited by external forces. 
The Goodrich data exhibited two distinct forcing characteristics: tonal, wheel speed dependent disturbances at 
harmonics of the wheel speed, and broadband noise. Analysis demonstrated that both characteristics were important: 
the tonal disturbances were larger in magnitude and created the largest jitter response when the wheel harmonics 
crossed structural modes, but the broadband noise was always present and therefore continuously pumped energy 
into wheel structural modes.  

The forcing characteristics were modeled by a speed-squared model for the harmonics, and a broadband noise 
spectrum for the remaining disturbance: 

 {
2
rw rw

1 Random Dist.
Tonal/Hamonic Dist.

( ) sin(2 ) ( )
hN

i i i
i

d t C f h f t W tπ φ
=

= + +∑
1444442444443

 (4) 

where iC  is the amplitude coefficient, rwf  is the reaction wheel speed, ih  is the ith harmonic number, iφ  is the 
phase associated with the ith harmonic, and ( )W t is the random noise disturbance.  The disturbance models were 
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created sequentially, with the harmonic model developed first (since the signal to noise is higher at the harmonics). 
The harmonics were then subtracted off to leave the broadband data.  Attempts to fit a model to the broadband data 
gave unsatisfactory results, so the broadband data itself was used to perform the broadband analysis.  

The harmonic disturbances were identified by using order analysis to transform the independent variable from 
frequency to harmonic factor (i.e., multiple of the wheel speed).  Harmonic numbers ih  were then identified as 
ridges in the contour at constant harmonic factor.  Each harmonic was then independently fit with a speed-squared 
model by simultaneously tuning the coefficient iC and the structural model to the order analysis data (force/torque 
versus wheel speed) for that harmonic. Each of the four flight wheels was analyzed. Between 12 and 23 harmonics 
from 0.4 to 14.54 times the fundamental were identified. An example of the wheel radial disturbance torque ( )yM  
is shown as a contour plot in Figure 13.  The x and y axes of the plot are frequency and wheel speed, respectively.  
The dotted diagonal lines indicate the harmonic numbers identified for the wheel radial torque disturbance.  The four 
wheels had many of the same lower harmonics (to about 9.0 times the fundamental), but the forcing levels at 
common harmonics can vary significantly between wheels, by up to a factor of 10.   

The harmonic model was used to perform disturbance analysis by evaluating each harmonic at a vector of 
predefined wheel speeds, including the filtering from the wheel gyroelastic model. The vector was fine enough to 
give several points per half-power bandwidth of each of the spacecraft structural modes, so that the peak jitter was 
found.  The random disturbance model was obtained directly from the power spectral densities (PSDs) ( )wwS ω  of 
the test data after extracting the harmonic disturbances.  The random disturbance contribution to output performance 
can be computed easily using equation (1) stated in Section II, and the LOS PSD is calculated using the following 
equation6,7 

 H
zz zw ww zwS G S G=  (5) 

where ( )zwG ω  is the transfer function from wheel disturbance w to LOS performance z.  The responses due to each 
of the harmonics and the random disturbance were then root sum squared together, assuming the different 
disturbance components were uncorrelated.  To understand the impact of modal frequency uncertainty, sensitivity 
analyses were done by shifting the disturbance frequency by small increments (1e-3 Hz). The largest LOS errors 
from the sensitivity analyses were reported as the CBEs.   

B. Model Verification and Calibration 
For the reaction wheels, the disturbance model is based on the induced vibration data measured by Goodrich.  

Two analysts on the jitter team independently developed the wheel harmonic and random noise models and 
conducted wheel disturbance analyses to verify each other’s results.  The model parameters such as harmonic 
numbers and amplitudes, and reaction wheel structural modal frequencies were calibrated to the induced vibration 
data.  As an example, Figure 14 shows the comparison between the radial moment data and the model fit for the 
fundamental harmonic ( ih =1.0). 

 
Figure 13 Contour plot of wheel torque 

 
Figure 14 Radial moment fit to first harmonic



 
 

12

C. Model Validation 
In order to validate the reaction wheel disturbance model and analysis approach, one of the flight wheels was 

mounted on the Structural Verification Unit with complete wheel electronic integration.  A sketch of the setup is 
shown in Figure 15.  The software for the wheel test incorporated a simple proportional-integrator controller 
developed to control the wheel speed using the wheel tachometer feedback.  The control software was loaded to the 
SDO Attitude Control Electronics (ACE) engineering test unit (ETU).  The ETU ACE/wheel telemetry, including 
torque commands, motor current, and tachometer pulse counts, was monitored by the NTGSE and the ASIST 
workstation.  The NTGSE is a Bus Controller Simulator (BCS) that provides the 1553 interface to the ACE.  The 
ASIST workstation is a PC which, when used in conjunction with the BCS, simulates the Single Board Computer 
(SBC) and the ground station.  This computer tool allowed the testers to interact with the flight software loaded in 
the ACE. 

As the flight wheel excited the SVU structure, tri-axial accelerometers mounted at each of the four AIA 
telescopes, the HMI instrument, and the three bus-instrument module interface locations measured the jitter 
vibration levels.  All the test data were logged using the DataPhysics system at a sample rate of 1024 Hz.  An 
additional tri-axial accelerometer was mounted at the flight wheel housing.  This measurement showed a strong 
response component at the wheel spin rate, and provided a more accurate measure of the wheel speed than the 
tachometer. 

During the flight wheel tests two operating modes were employed. First, the flight software commanded the 
ACE to drive the wheel to a specific wheel speed and hold the speed constant for the duration of the dwell speed 
tests (2-5 min.).  Second, the flight software commanded the wheel to ramp the speed at a fixed rate of acceleration 
(0.1 RPM/sec or 1.0 RPM/sec).  The ramp speed tests helped the test engineers to identify problematic wheel speed 
ranges that correspond to large jitter motions observed at the instruments.  The test engineers then targeted those 
speed ranges using the dwell speed mode.        

 

 
Figure 15 SVU and flight wheel jitter test setup 

 
A representative set of the wheel ramp results are shown in Figure 16.  The blue crosses represent the root-mean-

square (RMS) acceleration data measured during the tests, the dashed line shows the analytical prediction using the 
disturbance model and analysis described above plus the background noise, and the solid constant line indicates the 
background noise level during the tests.  The plots in the top row illustrate RMS accelerations at AIA telescope #3 
during the low acceleration (0.1 RPM/sec), ramp speed test.  This test focuses on measuring disturbances at low 
wheel speeds (<700 RPM) which correspond to the expected wheel speed operational range on orbit.  From Figure 
16 and other test data, the results show that our analytical prediction is generally a factor of 1.5 to 2.0 larger than the 
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measured accelerations.  Based on this observation, the required jitter analysis margin on the wheel disturbances was 
reduced from 100% to 66.7%.  The plots on the bottom row of Figure 16 show the acceleration measurements from 
the same location during the high acceleration (1.0 RPM/sec) ramp speed test.  At high wheel speeds (>700 RPM), 
the analysis prediction follows the measured data surprisingly well given the uncertainties in the structural FEM.  
The flight wheel plus SVU jitter tests validated the modeling and analysis approach used for SDO. 

 
Figure 16 SVU wheel jitter results: (top) low wheel speed (bottom) high wheel speed 

 

VI. On-orbit Mitigation Strategies and Test Plans 
Although detailed analysis and assembly level tests were performed in order to obtain good jitter predictions, 

there are still several sources of uncertainties in the system.  The structural finite element model will not have all the 
modes correlated to test data at high frequencies (>50 Hz).  The performance of the instrument stabilization system 
will not be known exactly but should be close to the analytical model.  A true disturbance-to-LOS observatory level 
test will not be available due to the tight schedule of the flight spacecraft, the cost in time and manpower, difficulties 
in creating gravity negation systems, and risks of damaging flight hardware.  To protect the observatory jitter 
performance against model uncertainties, the jitter team has devised several on-orbit contingency plans in addition 
to reserve margins on analysis results.    

Extensive HGA pointing algorithm modifications were recommended to mitigate HGA jitter issues.  Due to the 
large scope of this work, a separate paper is written (Ref. 8) to describe the details of the HGA pointing algorithm 
and jitter mitigation strategies.  In this section, the on-orbit instrument and reaction wheel mitigation strategies test 
plans are presented.   

A. EVE Instrument  
Although the EVE instrument does not have tight jitter requirements, it contains four noisy filter wheels driven 

by stepper motors.  The EVE filter wheel is another large disturbance contributor after the HGAs and the reaction 
wheels, but it does not operate as frequently as the other two jitter sources.  Each of the four EVE filter wheels is 
expected to move 10 min per day with a total of 40 min operational time per day.   Since the step rates of the EVE 
filter wheels are tunable, the team plans to vary the step rates after SDO gets in orbit and determine which step rate 
should be used to minimize jitter.   

For the on-orbit jitter tests, the instrument limb sensors can be used to measure jitter vibrations.  These sensors 
are also used as feedback signals for the AIA and HMI ISS with an update rate of 256 Hz.  During the jitter tests, the 
ISS loop can be opened to allow larger jitter signals to be measured.  Each of the four EVE filter wheels will be 
commanded to spin at a pre-specified rate for about a minute while the AIA and HMI limb sensors record the jitter 
data.  The RMS of the jitter time-history data will be computed and used to determine which step rate should be 
used during nominal EVE operations. 
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B. Reaction Wheel  
Since SDO is sun-pointing, and since it is fairly symmetric about the sun line, the solar torques acting on SDO 

are relatively low.  As a result, the ACS team has considerable freedom to reduce the reaction wheel speed range in 
order to reduce reaction wheel disturbances.  In general larger wheel disturbances are generated at higher wheel 
speeds.  Based on wheel jitter predictions, the wheel speeds are nominally limited to 400 RPM (out of the ~3000 
RPM momentum limit) in order to satisfy the wheel jitter requirement.  Once SDO gets on orbit, the team plans to 
test the wheel–induced jitter, and will try to extend the wheel speed limit if possible.   

The on-orbit tests for the reaction wheels are intended to identify the impact of the wheel-induced disturbances 
on spacecraft jitter at wheel speeds outside the prescribed nominal operating range. The basic principle behind the 
tests is to slew one wheel at a time in the speed range of interest while ensuring that the remaining wheels stay 
inside the prescribed nominal range Thus a large jitter response can be associated with the slewing wheel. The speed 
slew range is limited to 800 RPM since the other wheels must remain in the nominal range. The attitude control 
system’s Delta-H and Science modes are used to bias the targeted wheel to a prescribed speed outside the nominal 
range, while the remaining three wheels are biased at either extremes of the nominal range (+400 or -400 RPM). The 
spacecraft jitter is sensed via the two limb sensors within the AIA and the HMI instruments.  The tests will enable 
the measurement of the true jitter-limited wheel speed range. The algorithm for the on-orbit wheel jitter tests is 
summarized in the following: 

a) Implement a digital low pass filter to attenuate the high frequency noise in the measured wheel momentum 
signals from tachometers.  

b) Compute the initial desired momentum bias in the body frame, and invoke the Delta-H and Science modes 
to take the wheel speeds from their current values to their desired values. It is assumed that the wheel 
speeds have reached steady-state prior to start of the wheel jitter test. SDO employs four reaction wheels in 
a pyramid configuration about the body X axis, i.e., there are two pairs of opposing wheels titled away 
from the X axis towards Y and Z axes, respectively.  For example, if we assume that the targeted wheel is 
wheel no. 1, and it is desired to slew that wheel from an initial wheel speed of 0w  to  0 800w + , then the 
initial wheel speeds for the other three wheels must be set to [400 -400 400] RPM, respectively. The 
negative speed corresponds to wheel no.3 which is the wheel that opposes wheel no. 1.  

d) Set the initial value of the slew torque commands to the bias values 
 
 *slew bias wT T N=  
   Where biasT represents the torque bias, and wN denotes the null vector in the wheel space. biasT is chosen to 
   provide a desired slew rate for the targeted wheel. 

e) At every minor cycle (40 seconds), compute the difference in the current wheel momentum and the 
momentum in the previous cycle for the target wheel. 

 
 1( ) ( )k kwd wh i wh i−= −  
 

 Where index “i” denotes the target wheel, the index “k” refers to the current cycle, and the index “k-1” refers 
to the previous cycle. 

  
f) If  limwd wd<= , apply a delta correction to the slew torque commands to increase the slew rate: 
 

 *slew slew corr vT T T N= +  
  
  Where corrT represents the scale of the torque correction, and is computed as follows.  
 
 lim*sgn( )*corr biasT T wd wdα= −  
 
   Where α is scale factor chosen at 0.025. 

g) Stop the experiment when either the target wheel speed reaches its final prescribed wheel speed, or the 
absolute value of the speed of one or more of the supporting wheels reaches the maximum allowed range. 
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The wheel slew algorithm was implemented within the high-fidelity simulation. This simulation includes 
detailed models of components and ACS modes, as well as structural dynamics. The flexible dynamics are 
represented by the finite element model normal modes.  Figure 17 and Figure 18 illustrate a simulation run with 
wheel no. 1 as the targeted wheel. The wheel was slewed from 2200 RPM to just over 2500 RPM in about 1500 
seconds. Here, the initial speeds for wheels no. 2-4 were chosen as [350 -350 350] RPM, respectively. Note that 
these wheels remain in the allowable range during the course of the test.  Figure 18 illustrates the LOS jitter at the 
CCD of the HMI instrument. Significant excursions, exceeding the HMI wheel allocation of 60 mas, are observed at 
wheel speeds of 2300-2400 RPM.  
 

 
Figure 17 True Wheel Speeds 

 
Figure 18 HMI Line-of-Sight Jitter

 
  

VII. Summary and Lessons Learned 
This paper describes the tests used to support SDO jitter analysis and on-orbit jitter mitigation. It begins with an 

overview of the SDO jitter analysis approach.  Methodologies, tests, and test results for verifying, calibrating, and 
validating models of the major jitter sources are presented.  In recognition of the fact that model uncertainties still 
exist even after extensive model correlation effort, the paper then lays out the mitigation strategies and on-orbit jitter 
test plans that were developed to accommodate unpredicted on-orbit jitter problems.  Jitter predictions based on the 
calibrated models indicate that SDO will have an acceptable level of jitter.  In conjunction with the on-orbit jitter 
mitigation, there is high confidence that SDO will meet its stringent jitter requirements.  After spending almost three 
years of analysis and test effort on the SDO jitter problem, the SDO jitter team has the following lessons learned to 
share with the community: 

• For jitter sensitive missions (sub-arcsecond level requirements): 
– Perform early jitter assessments to identify what protective steps are necessary.   
– Instrument mechanisms: vary step frequency or commutation frequency on-orbit to avoid exciting 

structural modes 
– Reaction wheels: develop specs for higher harmonics and random noise components 
– HGA: consider micro-stepping and implement pointing algorithm to allow random and stagger 

stepping 
– Provide for coordination between telescope and mechanism operations 
– Provide for on-orbit jitter assessment, to support modification of mechanism operational modes 

• Every disturbance source should be measured as early as possible 
– Simple mechanism models may not account for gears, backlash, higher harmonics, etc 
– A test facility should be set up to test all mechanisms 
– Measurement system must be well calibrated before tests 

• Plan model verification, validation, and calibration work early 
– Calibrate component models and validate at systems level (as close to flight configuration as 

possible) 
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– Accuracy of system model is bounded by accuracy of component models (usually worse due to 
uncertainty at mounting interfaces) 

• Damping ratio of 0.3% is a good number for jitter analysis for conventional structural system at typical 
temperature range (non-cryogenic) 

– Suggested damping value is a good starting point but should be verified by test 
• An isolation system might be beneficial 

– At reaction wheel mounting interface, if speed cannot be limited 
– At instrument interface 
– Waiting until jitter analysis is complete before deciding on the implementation of an isolation 

system will likely be too late 
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